DRJ Staff
The First 24 Hours Post-Disaster
Despite all reasonable precautions, a disaster has occurred. It could be a flood, lightning strike, fire or act of sabotage such as orange juice in the computer. The actions you and your insured take in the following 24 hours are critical in preventing irreparable damage, so that the affected equipment may be restored to pre-incident conditions. This degree of restoration is possible far more often than one may expect and in situations that, at first glance, appear hopeless.
Corrosion processes begin immediately following a disaster, but corrosion does not proceed at a uniform rate over time. The rate is greatest at or about the time when the fire is extinguished or the flood water has drained. Thereafter, the corrosion rate decreases gradually over time but never reaches zero.
Fire and Halogens
When dealing with fire aftermath, one must consider the effect of chloride ion in ferrous metal corrosion. This ion is almost always present because of the near universal presence of Poly Vinyl Chloride (PVC) electrical insulation, water piping and other articles. PVC is the most commonly used plastic in the world. However, when heated to over 200 degree Celsius, it decomposes with release of hydrogen chloride gas (HCI). Combined with the water that is either produced by combustion or otherwise present, hydrochloric acid (also known industrially as muriatic acid—one of the most corrosive chemicals known) is formed.
Another point to be considered is the usage of halocarbons in fire-extinguishing systems-known commercially as Halons (trademark of E.I. du Pont de Nemours & Co.) The two Halons used for this purpose are CF3, Br, Halon 1301 or BTM and CF2, CI Br, Halon 1211 or BCF. These materials are highly effective in halting combustion, even at low, nontoxic concentrations. For environmental reasons, the use of Halons is being discouraged, and fewer new systems are being installed, despite the fact that there are no good alternatives to them. Of course, we must deal with the thousands of Halon systems presently installed and in service. Halon 1211 will produce HCI. Both Halons will produce HBr and Br2, (hydrobromic acid and elemental Bromine), upon contact with flame or hot metal. These bromine-containing species are even more active than HCI in promoting the corrosion of ferrous metal. They also will attack copper, brass, zinc, aluminum and even the noble (gold, platinum, etc.) metals.
At the conclusion of the fire-fighting effort, conditions are optimum for rapid corrosion: hot, wet, acidic and highly halogenated. It is not entirely surprising to see moist brown rust appearing on steel surfaces even before the firemen have left the building. Fortunately, this rapid corrosion rate is not maintained for long. The temperature will drop, and ventilation will produce airflow that removes humidity and most of the acidic halogen gases. Within a few hours of the fire, it would be difficult to detect any HCI or HBr in the air. On surfaces inside the building, however, they remain easy to detect in puddles of water on the floor, inside equipment, in brick, concrete, fabric, dust, soot and other materials.
The corrosion processes are slow but continuous and progressive. Hydrochloric acid, which has been trapped in the above reservoirs, will gradually move back into the atmosphere. Being gaseous, it moves with the air currents and condenses on cold and moist surfaces. Equipment not initially affected by the fire will show signs of corrosive attack, even in distant areas of the plant building.
The initial attack of HCI or HBr upon a metal produces the metal halide salts. However, these are not stable when in contact with moisture, They will hydrolyze, or react with water in air of greater than around 50 percent relative humidity.
The Vicious Cycle
The hydrolysis products are basic salts, oxides and hydroxides of the metal. Further reaction may occur with oxygen from the air to produce rust (FeO.OH) on iron or steel. These processes may be written:
Fe + 2HCI > FeCI2, + H2, (gas) (1)
Fe CI2, + 2H2O > Fe(OH)2, + 2HCI (2)
4Fe(OH)2 + 02 > 4FeO.OH + 2H2O (3)
Note that the first two steps constitute a catalytic cycle, with the HCI being re-released, so as to cause rusting of more metal. This attack may occur all at a given place, or the HCI may be carried by air transport to other locations.
It may be worse if the attack proceeds in one spot, because this leads to pitting. When a slight surface depression forms, the oxides or hydroxides produced at the top of the depression are somewhat protective against further attack by HCI, so that the bottom of the depression corrodes more rapidly than the top. Because tiny oxidation-type concentration cells are set up, dissolution of iron is more rapid in regions of lower oxygen concentration than in higher ones. Reaction (3) is favored in the oxygen-rich upper areas that become cathodic with respect to the oxygen-poor lower areas where anodic dissolution, represented by equation (1), occurs.
Iron dissolves at the bottom of a pit and deposits as rust at the top. This process does not require the presence of chloride ion and would continue even if natural diffusion/ventilation processes removed all chloride contamination. Of course, total removal would require infinite time.
In the days following a disaster, corrosion produces its most damaging effects. Sliding surfaces become roughened and bearings lose essential smoothness. Chloride ion migrates to areas previously uncontaminated.
Bacteria and fungi will produce corrosion even on stainless steels and copper/nickel alloys, as well as cast iron, aluminum, and concrete. The sulfate reducing bacteria, such as Desulfovibrio, are supported by sulfate ion, which is produced in fires involving coal, paper, wood or heating oil. Furthermore, electrolytic corrosion occurs whenever two dissimilar metals are in contact with an external electrically conductive liquid. This can cause rapid failure of soldered, brazed or welded joints.
Electrical and Electronic Equipment
Special problems arise in regard to electrical and electronic equipment. Corrosion may attack the copper or solder tracks on printed circuit boards. Even gold-plated contacts are attacked. The usual thickness of gold plating is about six microinches (0.14 micron). Although large compared to the diameter of a gold atom, this thickness is not sufficient to provide 100 percent surface coverage. There are many holes in the plating. Electron microscopy shows that substrate corrosion product erupts like mushrooms through these holes. This product can interfere with electrical contact as soon as the components are moved, especially in low-voltage circuits such as those in computers or telephone exchanges.
When electrical machinery is allowed to continue operating subsequent to a contamination event, the large voltages involved produce major electrochemical attack on metal surfaces. In addition, the electrolytic conduction process will cause chloride ion to migrate into crevices and regions to which it otherwise would not penetrate.
Clearly, corrosive damage as described above can reduce any equipment to a condition beyond economical repair. However, there is no need to allow this damage to occur!
Deceiving Appearances
When an observer arrives at the scene of devastation and sees the red-brown flash-rust coating that arises during the first few hours, he or she may feel that the only option is to replace the equipment. This is a costly option. It involves the direct replacement cost plus the delivery time of new equipment. However, the flash-rust is essentially superficial. The underlying metal is still smooth because pitting has hardly begun.
If the equipment is sprayed promptly with a water-displacing protective oil, the corrosion may be effectively halted for a period of about a week in outdoor storage or two weeks indoors. During this period, a decision may be reached as to whether to restore the equipment.
Full restoration will involve disassembly as needed, removal of contamination, rust removal, re-oiling, reassembly and testing. Competent restoration companies can perform these procedures, in this country and abroad.
For best results, your chosen restoration company should be contacted and asked to perform the initial inspection and protective spraying within the 24 to 48 hours following a disaster. The cost is small and it buys valuable time. When this procedure is not followed, the results may be distressing..
Tales From The Crypt
A One-Month Delay. An electrical fire occurred in a basement area of an office building, exposing graphic arts printing equipment to smoke and corrosive vapors. Four weeks later, our engineers were called and performed an initial inspection. High chloride levels were found on metal surfaces, accompanied by much visible rusting. Chloride levels were lower on nonmetallic surfaces, due to natural processes of dissipation. While some of the affected equipment was restorable, other items were beyond economical repair. Had we been called earlier, all of this costly equipment could have been cleaned and returned to service. Instead, the operator was obliged to use the services of other printers in order to satisfy the needs of his clients.
Another One-Month Procrastination. Optical equipment was exposed to rainwater during transport on a flatbed trailer. The equipment was delivered in a wet and already corroding condition. The purchaser had reason to believe that the equipment was unusable. When our engineers performed an inspection five weeks later, they found that the damage was mostly cosmetic in nature, with some pitting in noncritical areas. The equipment was found to be readily restorable. If it had been dried and oiled when first received, virtually all the corrosion could have been prevented.
A One-Year Hesitation. An Automated Teller Machine (ATM) was dropped from the back of a truck, falling a distance of approximately 30 inches. Subsequently, it was allowed to sit outside the purchaser’s facility, exposed to the elements. Almost a year later, we were asked to send our engineers to perform a survey and inspection. Despite the severe initial damage, the machine had considerable salvage value—at the time of the accident. As a result of a year’s corrosion, that value was reduced to nil.
A Costly Mistake
During a school holiday period, a steam pipe ruptured in a local high school. This filled the music room with a high-temperature fog which condensed on and within the electronic equipment housed therein. Although no chlorides were involved, pipe scale and water additives (corrosion inhibitors and anti flocculants) contacted the affected equipment.
About one month later, our office was contacted, and a consultant was dispatched. At that time, he observed a good deal of corrosion on unprotected metal surfaces. Most of this appeared to be flash-rust, with little pitting. Corrosion on printed circuit boards was, in some cases, fairly extensive.
As might be expected, the higher-valued pieces of equipment were damaged to a greater extent than the cheaper ones. Thus, although complete restoration was entirely possible, it was not considered to be cost-effective.
Had the equipment been dried and oiled (where appropriate) immediately following the incident, there would have been virtually no lasting damage. As it was, a loss of over $20,000 was taken.
Roger P. Gordon is the Manager of Research and Development for RELECTRONIC Service Corporation in Totowa, N.J.
International Disaster Recovery Planning
The trademark of the 90s--sophisticated technologies that enable a new ease of communications, both nationally and internationally--combined with the consistent expansion of companies has created a stronger link among businesses and nations throughout the world. Furthermore, the creation of a new European common market in 1992 will also profoundly affect and transform the way in which we conduct business, and it is apt to increase our direct involvement in foreign business affairs. It may soon be insufficient to plan for a disaster that affects only your company if you have vested interests abroad. This survey should give you some idea of the state of the disaster recovery industry in a variety of countries as well as the levels of involvement of several businesses.
Australia
Submitted by Wayne Lewis, CDRP, a disaster recovery consultant with the largest bank in the Pacific region:
Disaster Recovery Planning in Australia is still very much in its infancy, but gaining momentum each year. Its development basically was impacted by lack of available education, supported methodologies and distance from those countries which are advanced in this field.
The major banks in the mid-80s were perhaps the first to realize the necessity of being able to fully recover applications in a timely manner, and began to dabble in this field.
Since that time, realization of its importance has been growing--in the late 80s, Government departments (both Federal and State), service organizations, and manufacturing companies began to realize that an interruption to their services would not be tolerated for a long period of time by their customers.
The need, acceptance and promotion of disaster recovery, its principles, and its discipline even today are not completely accepted by some Australian management. However, the overall trend is that management is realizing that DR is not a task that can be done when there are a few spare hours.
DR in Australia mostly focuses on the repercussions of DP interruption or withdrawal (especially when an unplanned incident may have recently occurred) rather than examining DR from a variety of angles. While it is important to secure DP services, they are of little use if your clients cannot access their work place to use the equipment or services.
Strategy development in this discipline requires factual information. Armed with such information, one can then jettison the piecemeal or knee-jerk approach which is often the direction DR takes.
One way to obtain such information is the Business Impact Analysis. This contains the data provided by clients/customers. The BIA data can guide strategy development so we are able to put in place procedures that can be followed to avoid or reduce potential impacts.
Many CEO’s, if they really had an idea of the powder keg they are accountable for and the potential dollars that their company could lost, would certainly act on information available rather than waiting for an event to occur. The acceptance of the BIA in strategy development in Australia has yet to be fully realized.
The number of organizations in Australia that provide effective and viable hot-sites (medium-large), although growing, can still be counted on one hand. Large organizations, being the ones more severely impacted, must often resort to duplicate facilities.
The growth of suppliers and other third parties offering hot-sites or similar type arrangements for mid-range equipment, though long overdue, has been an exciting development in DR in Australia over the past two years.
At this stage, Australian governments (Federal or State) have not legislated to ensure that Financial Institutions have effective or demonstrable disaster recovery procedures in place. Like most DR planners, however, I believe that it is on the horizon.
As the 90s begin to unfold, it is hoped that organizations will begin to be more proactive by looking at the inherent vulnerabilities that threaten the survival of corporations (as well as the gainful employment of Disaster Recovery Professionals!).
FYI: Facts and Stats About DR Causing Phenomenas
EARTHQUAKE INFO Richter Magnitude Scale Measure | |
Magnitude 4 5 6 7 8 | Earthquake Minor Moderate Strong Major Great |
NOTE: Earthquake magnitude is generally measured using the
Richter Magnitude Scale while intensity is measured
using the Modified Mercalli Intensity Scale.
HURRICANE INFO Saffir/Simpson Hurricane Scale | ||
Category I II III IV V | Winds 74-95 mph 96-110 mph 111-130 mph 131-155 mph 155+ mph | Storm Surge 4-5 ft 6-8 ft 9-12 ft 13-18 ft 18+ ft |
TORNADO INFO The Fujita-Pearson Scale | ||
Class F0 F1 F2 F3 F4 F5 | Wind 40-72 mph 73-112 mph 113-157 mph 158-206 mph 207-260 mph 261-318 mph | Damage Light Moderate Considerable Severe Devastating Incredible |
HAIL SIZE ESTIMATES | |
Size Pea Penny Quarter Half Dollar Golfball Tennis Ball Baseball Grapefruit | Inches .25 .75 1.00 1.25 1.75 2.50 2.75 4.00 |
Information compiled from the following sources: Hail and Wind Speed /Hurricane/Tornado - U.S. Department of Commerce, National Oceanic and Atmospheric Administration, and National Weather Service; Earthquake - US Army Corps of Engineers)
Terrorism Coverage Elsewhere
Northern Ireland
Terrorism coverage has been excluded in Northern Ireland for a number of years. In 1977, the British Insurance Association announced a standard form of exclusion relating to terrorism losses in Northern Ireland. This led the Irish government to introduce the Criminal Damage (Compensation) Northern Ireland (Order of 1977).
In order to be able to benefit under this act, a claimant must show that the damage incurred was unlawfully, maliciously or wantonly caused to property either by a riotous assembly or as a result of an act committed maliciously by a person acting on behalf of or in connection with an unlawful association. Under the act, a justification for a claim is a certificate issued by the Chief Constable of the Royal Ulster Constabulary indicating that the loss falls under one of these headings. Insurers have not in fact excluded riot losses from their coverage but many claims under the other section of the order can effectively be considered terrorism claims.
Spain
In Spain, terrorism is one of the catastrophe perils covered by the Corsorcio system, which is both obligatory and financed by the government. Premiums are collected by statutory rates on property values. Corsorcio also covers other catastrophes, including floods, and earthquakes, but the system does not include business interruption coverage. There is no restriction on the private market providing this catastrophe perils coverage, but the contributions must still be made to the Corsorcio pool. Companies operating in Spain have no difficulty buying adequate limits of terrorism coverage for property damage and business interruption, and the market tends to provide for coverage other than Corsorcio’s on a difference-in-conditions basis.
France
In France, full terrorist coverage is available for property damage insurance, and in fact legislation requires insurers to provide this protection. Under this arrangement, the direct insurer has the option to retain the risk, reinsure it on the commercial market or reinsure the risk with the CCR, which is the French state-controlled reinsurer. This flexible arrangement allows direct insurers to vary the percentage that they reinsure on a year-by-year or case-by-case basis. This obligation to insure does not apply to business interruption, although in practice both property and business interruption can be purchased to very adequate limits in the open market. These insurers have not however, experienced losses as large as those that hit London and New York in recent years.
France also has a pool to which insurers are obligated to contribute. This pool provides protection for personal injury to anyone harmed in a terrorist attack. France also has a catastrophe reinsurance program colloquially referred to as CAT NAT. This scheme supported by the government reinsurer, applies a levy of nine percent to all property premiums which pays for catastrophe perils losses. If the problems that the United Kingdom now have were to develop in France, it is likely that an adjustment would be made to the CAT NAT system.
South Africa
In South Africa, there is obviously a very considerable threat from terrorism. In 1976, following riots in Soweto, the insurance market determined that it could not cover terrorism risks and advised the South African government that they were canceling cover. However, a cooperative deal was worked out between 15 of the largest direct insurers and the government. This involved the 15 companies effectively capitalizing a pool called the South African Strikes and Riots Insurance Association (SASRIA); the original capitalization was five million rand spread proportionately according to the size of the 15 companies, which was subsequently raised to 10 million rand.
The arrangement’s main feature, however, was the government’s backing as a reinsurer of last resort. Soon after the pool was established, the reinsurance market became involved in excess of loss protection, and SASRIA is now very significantly funded at four billion rand, or approximately $75 million. Clearly, the pool has very significant exposures, but it seems that the stated objective of the arrangement is to build up the pool to approximately 20 billion rand. Although there are limitations to this system, it seems to meet the needs of most businesses.
This article is reprinted by permission of Risk Management magazine.
404: Error - Page Not Found
404 - Error: Page Not Found
You may not be able to visit this page because of:
- an out-of-date bookmark/favourite
- a search engine that has an out-of-date listing for this site
- a mistyped address
- you have no access to this page
- The requested resource was not found.
- An error has occurred while processing your request.
If you continue to have problems accessing the page you're looking for, please contact us.
Registration Agreement
The Disaster Recovery Journal is FREE to anyone involved in managing, preparing, or responsible for Disaster Recovery/Business Continuity Planning in the United States and Canada. All others can either subscribe FREE to the Online Version or pay $47.00 (US) a year for a subscription to the printed version. Please send and an email to drj@drj.com if you wish to receive the printed edition and pay the $47. To begin subscribing to DRJ, please subscribe today!
Rate Card
Rate Card
All ads are quoted in 4 color (Net Rates)
| FOUR COLOR | 4X | 3X | 2X | 1X |
|---|---|---|---|---|
| Full Page | $3,997 | $4,305 | $4,468 | $4,612 |
| 2/3 Page | $3,224 | $3,445 | $3,501 | $3,712 |
| 1/2 Page | $2,515 | $2,735 | $2,831 | $2,946 |
| 1/4 Page | $1,699 | $1,740 | $1,825 | $1,896 |
| 1/8 Page | $1,290 | $1,395 | $1,455 | $1,496 |
| 2 Page Spread | $6,503 | $6,675 | $6,789 | $6,889 |
Special 8X Offer (Only Available in Full or 1/2 Page)
Full Page $3,589
1/2 Page $2,271
Premium Positions
Back and inside covers, Page 1: earned page rate plus 20%.
All other requested positions: earned rate plus 10%.
Requested positions are guaranteed only with this premium. Contact the advertising department about availability of premium positions.
Materials & Contract Deadlines
| Issue | Contract Due | Materials Due |
|---|---|---|
| 1st Quarter | Nov. 2, 2012 | Nov. 16, 2012 |
| 2nd Quarter | Feb. 1, 2013 | Feb. 15, 2013 |
| 3rd Quarter | May 3, 2013 | May 17, 2013 |
| 4th Quarter | Aug. 2, 2013 | Aug. 16, 2013 |
Ad Specs

PRINTING PREPARATION
Advertisements should be print ready. There may be additional charges for reproduction and any necessary additional work.
COLOR
All Advertisements are now accepted in full digital format. Acceptable
formats are as follows: Adobe Acrobat PDF, Macintosh/PC InDesign,
PageMaker, Quark XPress, EPS, and TIFF. Color file must be at least 300
dpi at 100%. All fonts and images must accompany the file for remote
printing. Color match prints must also accompany all digital files. PDF files
are preferred: Please contact our office for specifications on exporting
your files to high resolution PDF file.
FOUR COLOR ADS
All digital advertisement files must arrive at our office in CMYK color format. Additional charges may apply for conversion from RGB to CMYK. Please contact our office for any questions.
Mechanical Specifications
| | Full Page | Two Page Spread |
|---|---|---|
| Trim Size | 8-3/8" x 10-7/8" | 16-3/4" x 10-7/8" |
| Bleed Size | 8-5/8" x 11-1/8" | 17-1/4-" x 11-1/8" |
| Live Copy | 7-5/8" x 10-3/8" | 15-3/4" x 10-3/8" |
| Ad Unit | Dimensions |
|---|---|
| 2/3 Vertical | 4-3/4" x 9-7/8" |
| 2/3 Square | 7-1/4" x 7-1/4" |
| 1/2 Island | 4-3/4" x 7-1/4" |
| 1/2 Horizontal | 7-1/4" x 4-3/4" |
| 1/4 Island | 3-5/8" x 4-3/4" |
| 1/4 Horizontal | 4-3/4" x 3-5/8" |
| 1/8 Island | 2-3/8" x 3-5/8" |
Email Marketing
Email Marketing
The Informational Update is a supplemental twice weekly e-newsletter published by Disaster Recovery Journal. We have added this to inform our readers of exciting Informational Offerings that many service providers have available.
- Industry White Papers
- Industry Surveys and/or Research
- Free Seminars or Webinars
- Sample Downloads or Plans
- Free Analysis or Benchmarking
- And More
The plan is simple. Promote an informational offering (white-paper, free webinar, survey, etc.) and sit back and watch as your site receives hit after hit. On average, 1,000 people visit the sponsoring vendors site after receiving the Informational Update.
Rate
$5,000 per email blast.
Banner Specifications
500 pixels x 100 pixels, JPG or GIF image, animation available. Company logo may also be included. ~150 word description explaining the free informational offer.
Closing Dates
Twice Weekly – Materials due one week prior to mailing. Mails every Tuesday and Thursday.




